Approximate inversion for Abel integral operators of variable exponent and applications to fractional Cauchy problems

نویسندگان

چکیده

We investigate the variable-exponent Abel integral equations and corresponding fractional Cauchy problems. The main contributions of work are enumerated as follows: (i) develop an approximate inversion technique for operators, based on which we analyze differential equations; (ii) prove that sensitive dependence well-posedness classical Riemann-Liouville initial value could be resolved by adjusting variable exponent; (iii) singularity solutions to also eliminated exponent its derivatives at time, which, together with (ii), demonstrates advantages introducing exponent. proposed provides a potential means convert intricate problems feasible forms, above findings suggest may serve connection between integer-order models time.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators

In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

An approximate method for Abel inversion using Chebyshev polynomials

Many problems in physics like reconstruction of the radially distributed emissivity from the line-of-sight projected intensity, the 3-D image reconstruction from cone-beam projections in computerized tomography, etc. lead naturally, in the case of radial symmetry, to the study of Abel’s type integral equation. In this paper, a new stable algorithm based on shifted Chebyshev polynomial approxima...

متن کامل

the approximate solutions of fredholm integral equations on cantor sets within local fractional operators

in this paper, we apply the local fractional adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of fredholm integral equations of the second kind within local fractional derivative operators. the iteration procedure is based on local fractional derivative. the obtained results reveal that the proposed methods are very efficient and simple tools ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2022

ISSN: ['1311-0454', '1314-2224']

DOI: https://doi.org/10.1007/s13540-022-00071-x